Vol. 12 Núm. 2 (2020): Ciencia y Salud Virtual
Artículos de Revisión

Estrategias de ingeniería tisular de la pulpa dental: revisión de literatura

Jorge Andrés Romero Polo
Universidad del Norte
Publicado December 30, 2020
Palabras clave
  • Ingeniería Tisular,
  • Pulpa Dental,
  • Células Madre,
  • Regeneración
Cómo citar
Simancas Escorcia, V., & Romero Polo, J. A. (2020). Estrategias de ingeniería tisular de la pulpa dental: revisión de literatura. Ciencia Y Salud Virtual, 12(2), 113-126. https://doi.org/10.22519/21455333.1508

Resumen

Introducción. La odontología actual experimenta una remarcable evolución gracias al desarrollo de alternativas que pretenden conservar la vitalidad pulpar. Una opción es la ingeniería tisular, que plantea la incorporación de células madres en un biomaterial para reconstruir un tejido con una estructura y función similar al original. Objetivo. Describir las estrategias de la ingeniería tisular enfocadas a la regeneración de la pulpa dental. Método. Fue realizada una revisión bibliográfica en las bases de datos Medline, EBSCO-Host y Scopus empleando los términos: Dental tissue engineering and/or strategy y Dental pulp regeneration entre los años 2008 a 2019. De los 6752 artículos encontrados, 85 fueron seleccionados y permitieron la descripción de tres estrategias de ingeniería tisular empleadas en la regeneración pulpar: la migración de células madres, la utilización de una matriz celular y el empleo de una matriz biomimética. Resultados: Se destacó la importancia de las células madres de origen dental, matrices y posibles combinaciones entre ellas. Conclusiones. Las estrategias descritas hacen uso de células madre principalmente de origen dental, destacando que la combinación de éstas con materiales bioactivos, hacen factible la formación de una pulpa dental equivalente in vitro e in vivo hasta ahora en etapa experimental.

Descargas

La descarga de datos todavía no está disponible.

Citas

  1. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004; 15(1):13–27. https://doi.org/10.1177/154411130401500103
  2. Stanley HR, White CL, McCray L. The rate of tertiary (reparative) dentine formation in the human tooth. Oral Surg Oral Med Oral Pathol Oral Radiol. 1966;21(2):180–9. https://doi.org/10.1016/0030-4220(66)90240-4
  3. Huang GT-J. The Hidden Treasure in Apical Papilla: The Potential Role in Pulp/Dentin Regeneration and BioRoot Engineering. J Endod. 2008;1;34(6):645–51. https://doi.org/10.1016/j.joen.2008.03.001
  4. Tavares PBL. Prevalence of Apical Periodontitis in Root Canal–Treated Teeth from an Urban French Population: Influence of the Quality of Root Canal Fillings and Coronal Restorations. J Endod. 2009;1;35(6):810–3. https://doi.org/10.1016/j.joen.2009.03.048
  5. Barreto MS, Moraes R do A, Rosa RA da, Moreira CHC, Só MVR, Bier CAS. Vertical Root Fractures and Dentin Defects: Effects of Root Canal Preparation, Filling, and Mechanical Cycling. J Endod. 2012;38(8):1135–9. https://doi.org/10.1016/j.joen.2012.05.002
  6. Vishwanathan PK, Muliyar S, Chavan P, Reddy PM, Reddy TPK, Nilawar S. Comparative evaluation of the fracture resistance of teeth prepared with rotary system, filled with single cone gutta-percha and laterally condensed with zinc oxide eugenol and resin based (AH26) sealers to that of Resilon. J Contemp Dent Pract. 2012;1;13(6):773–81. https://doi.org/10.5005/jp-journals-10024-1228
  7. Harrison RH, St-Pierre J-P, Stevens MM. Tissue Engineering and Regenerative Medicine: A Year in Review. Tissue Eng Part B Rev. 2014;20(1):1–16. https://doi.org/10.1089/ten.teb.2013.0668
  8. Albuquerque MTP, Valera MC, Nakashima M, Nör JE, Bottino MC. Tissue-engineering-based Strategies for Regenerative Endodontics. J Dent Res. 2014;93(12):1222–31. https://doi.org/10.1177/0022034514549809
  9. Kaushik SN, Kim B, Walma AMC, Choi SC, Wu H, Mao JJ, et al. Biomimetic microenvironments for regenerative endodontics. Biomater Res. 2016;20(1):14. https://doi.org/10.1186/s40824-016-0061-7
  10. Patil R, Kumar BM, Lee W-J, Jeon R-H, Jang S-J, Lee Y-M, et al. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp Cell Res. 2014;320(1):92–107. https://doi.org/10.1016/j.yexcr.2013.10.005
  11. Bianco P, Robey PG, Simmons PJ. Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays. Cell Stem Cell. 2008;10;2(4):313–9. https://doi.org/10.1016/j.stem.2008.03.002
  12. Ilic D, Ogilvie C. Concise Review: Human Embryonic Stem Cells—What Have We Done? What Are We Doing? Where Are We Going? Stem Cells. 2017;35(1):17–25. https://doi.org/10.1002/stem.2450
  13. Das S, Bonaguidi M, Muro K, Kessler JA. Generation of embryonic stem cells: limitations of and alternatives to inner cell mass harvest. Neurosurg focus. 2008;24(3–4):E4. DOI: 10.3171/FOC/2008/24/3-4/E3
  14. Sunil PM. Induced pluripotent stem cells in dentistry. J Pharm Bioallied Sci. 2016;8(Suppl 1):S23–7. DOI: 10.4103/0975-7406.191960
  15. Ji J, Ng SH, Sharma V, Neculai D, Hussein S, Sam M, et al. Elevated Coding Mutation Rate During the Reprogramming of Human Somatic Cells into Induced Pluripotent Stem Cells. Stem Cells. 2012;30(3):435–40. https://doi.org/10.1002/stem.1011
  16. Tomasello L, Mauceri R, Coppola A, Pitrone M, Pizzo G, Campisi G, et al. Mesenchymal stem cells derived from inflamed dental pulpal and gingival tissue: a potential application for bone formation. Stem Cell Res Ther. 2017;1;8(1):179. https://doi.org/10.1186/s13287-017-0633-z
  17. Ibarretxe G, Crende O, Aurrekoetxea M, García-Murga V, Etxaniz J, Unda F. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration. Stem Cells Int. 2012; 2012:103503. https://doi.org/10.1155/2012/103503
  18. Tsai AI, Hong H-H, Lin W-R, Fu J-F, Chang C-C, Wang I-K, et al. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp. Biomed Res Int. 2017; 2017:2851906. https://doi.org/10.1155/2017/2851906
  19. Lima RL, Holanda-Afonso RC, Moura-Neto V, Bolognese AM, DosSantos MF, Souza MM. Human dental follicle cells express embryonic, mesenchymal and neural stem cells markers. Arch Oral Biol. 2017; 73:121–8. https://doi.org/10.1016/j.archoralbio.2016.10.003
  20. Alvarez R, Lee H-L, Wang C-Y, Hong C. Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers. Int J Oral Sci. 2015;18;7(4):213–9. https://doi.org/10.1038/ijos.2015.42
  21. Akiyama K, Chen C, Gronthos S, Shi S. Lineage differentiation of mesenchymal stem cells from dental pulp, apical papilla, and periodontal ligament. Methods Mol Biol. 2012; 887:111–21. https://doi.org/10.1007/978-1-61779-860-3_11
  22. Piva E, Tarlé SA, Nör JE, Zou D, Hatfield E, Guinn T, et al. Dental Pulp Tissue Regeneration Using Dental Pulp Stem Cells Isolated and Expanded in Human Serum. J Endod. 2017;43(4):568–74. https://doi.org/10.1016/j.joen.2016.11.018
  23. Pavan Kumar B, Ram Mohan S, Mohan AP, Jeevan Kumar KA, Yashwanth Yadav B. Versatility of Pleuripotent Undifferentiated Stem Cells Aspirated from Bone Marrow and its Applications in Oral and Maxillofacial Surgery. J Maxillofac Oral Surg. 2016;15(1):1–11. https://doi.org/10.1007/s12663-015-0793-2
  24. Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, Wu BM, et al. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ann Biomed Eng. 2016;44(6):1908–20. https://doi.org/10.1007/s10439-016-1594-6
  25. Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep. 2017; 111:1–26. https://doi.org/10.1016/j.mser.2016.11.001
  26. Paduano F, Marrelli M, Alom N, Amer M, White L, Shakesheff K, et al. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed. 2017;28(8):730-748. https://doi.org/10.1080/09205063.2017.1301770
  27. Rasoulianboroujeni M, Kiaie N, Tabatabaei FS, Yadegari A, Fahimipour F, Khoshroo K, et al. Dual Porosity Protein-based Scaffolds with Enhanced Cell Infiltration and Proliferation. Sci Rep. 2018;5;8(1):14889. https://doi.org/10.1038/s41598-018-33245-w
  28. Pandit N, Malik R, Philips D. Tissue engineering: A new vista in periodontal regeneration. J Indian Soc Periodontol. 2011;15(4):328-37. https://doi.org/10.4103/0972-124X.92564
  29. Maraldi T, Riccio M, Pisciotta A, Zavatti M, Carnevale G, Beretti F, et al. Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization. Stem Cell Res Ther. 2013; 21;4(3):53. https://doi.org/10.1186/scrt203
  30. Fahimipour F, Dashtimoghadam E, Rasoulianboroujeni M, Yazdimamaghani M, Khoshroo K, Tahriri M, et al. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Dent Mater. 2018;34(2):209–20. https://doi.org/10.1016/j.dental.2017.10.001
  31. Kwon DY, Kwon JS, Park SH, Park JH, Jang SH, Yin XY, et al. A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Sci Rep. 2015;3;5:12721. https://doi.org/10.1038/srep12721
  32. Eramo S, Natali A, Pinna R, Milia E. Dental pulp regeneration via cell homing. Int Endod J. 2018;51(4):405–19. https://doi.org/10.1111/iej.12868
  33. Fayazi S, Takimoto K, Diogenes A. Comparative Evaluation of Chemotactic Factor Effect on Migration and Differentiation of Stem Cells of the Apical Papilla. J Endod. 2017;1;43(8):1288–93. https://doi.org/10.1016/j.joen.2017.03.012
  34. Steindorff MM, Lehl H, Winkel A, Stiesch M. Innovative approaches to regenerate teeth by tissue engineering. Arch Oral Biol. 2014;1;59(2):158–66. https://doi.org/10.1016/j.archoralbio.2013.11.005
  35. Y Kim J, Xin X, K Moioli E, Chung J, Lee C, Chen M, et al. Regeneration of Dental-Pulp-like Tissue by Chemotaxis-Induced Cell Homing. Tissue Eng Part A. 2010;16(10):3023-31. https://doi.org/10.1089/ten.tea.2010.0181
  36. Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, et al. Complete Pulp Regeneration After Pulpectomy by Transplantation of CD105 + Stem Cells with Stromal Cell-Derived Factor-1. Tissue Eng Part A. 2011;17(15-16):1911-20. https://doi.org/10.1089/ten.tea.2010.0615
  37. Huang C-C, Narayanan R, Warshawsky N, Ravindran S. Dual ECM Biomimetic Scaffolds for Dental Pulp Regenerative Applications. Front Physiol. 2018; 25;9:495. https://doi.org/10.3389/fphys.2018.00495
  38. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015;21(3–4):550–63. https://doi.org/10.1089/ten.tea.2014.0154
  39. Sancilio S, Gallorini M, Di Nisio C, Marsich E, Di Pietro R, Schweikl H, et al. Alginate/Hydroxyapatite-Based Nanocomposite Scaffolds for Bone Tissue Engineering Improve Dental Pulp Biomineralization and Differentiation. Stem Cells Int. 2018;2; 2018:9643721. https://doi.org/10.1155/2018/9643721
  40. Zheng L, Yang F, Shen H, Hu X, Mochizuki C, Sato M, et al. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials. 2011;32(29):7053–9. https://doi.org/10.1016/j.biomaterials.2011.06.004
  41. Xie X-H, Wang X-L, Zhang G, He Y-X, Wang X-H, Liu Z, et al. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Biomed Mater. 2010;5(5):054109. https://doi.org/10.1088/1748-6041/5/5/054109
  42. Nam S, Won J-E, Kim C-H, Kim H-W. Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. J Tissue Eng. 2011; 2011:812547. https://doi.org/10.4061/2011/812547
  43. Honda MJ, Fong H, Iwatsuki S, Sumita Y, Sarikaya M. Tooth-forming potential in embryonic and postnatal tooth bud cells. Med Mol Morphol. 2008;41(4):183-92. https://doi.org/10.1007/s00795-008-0416-9
  44. Ravindran S, Song Y, George A. Development of Three-Dimensional Biomimetic Scaffold to Study Epithelial–Mesenchymal Interactions. Tissue Eng Part A. 2010;28;16(1):327–42. https://doi.org/10.1089/ten.tea.2009.0110
  45. Tatsuhiro F, Seiko T, Yusuke T, Reiko T-T, Kazuhito S. Dental Pulp Stem Cell-Derived, Scaffold-Free Constructs for Bone Regeneration. Int J Mol Sci. 2018;22;19(7). https://doi.org/10.3390/ijms19071846
  46. Yu J, Shi J, Jin Y. Current Approaches and Challenges in Making a Bio-Tooth. Tissue Eng Part B Rev. 2008;14(3):307–19. https://doi.org/10.1089/ten.teb.2008.0165
  47. Lechguer AN, Kuchler-Bopp S, Hu B, Haïkel Y, Lesot H. Vascularization of Engineered Teeth. J Dental Res. 2008;87(12):1138–43. https://doi.org/10.1177/154405910808701216
  48. Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue Engineering of Tooth Crown, Root, and Periodontium. Tissue Eng. 2006;12(8):2069–75. https://doi.org/10.1089/ten.2006.12.2069
  49. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, et al. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009;106(32):13475–13480. https://doi.org/10.1073/pnas.0902944106
  50. Harrington J, Sloan AJ, Waddington RJ. Quantification of clonal heterogeneity of mesenchymal progenitor cells in dental pulp and bone marrow. Connect Tissue Res. 2014;55(sup1):62–7. https://doi.org/10.3109/03008207.2014.923859